













The Smart Cart is the ultimate tool for your physics lab and includes built-in sensors for measuring force, position, velocity, three axes of acceleration, and three axes of rotational velocity. Patent No. 10481173
- 1x Hook
- 1x Rubber bumper
- 1x Magnetic bumper
- 1x USB cable for charging
See the Buying Guide for this item's required, recommended, and additional accessories.
Product Summary
The patented Smart Cart is the ultimate tool for studying kinematics, dynamics, Newton’s Laws, and more. It is based on a durable ABS body with nearly frictionless wheels, just like our high quality PAScars. Now, we’ve added built-in sensors that measure force, position, velocity, and acceleration. The versatile Smart Cart can collect measurements on or off a track and transmit the data wirelessly over Bluetooth. In essence, it is a wireless dynamics cart that combines all the necessary sensors, without requiring any additional hardware.
Smart Carts are ideal for studying mechanics topics, such as kinematics and dynamics. The built-in load cells enable two Smart Carts to visually demonstrate Newton’s Third Law with ease. Additionally, built-in sensors for force and acceleration enable students to investigate Newton’s Second Law in minutes. Smart Carts truly are a physics lab on wheels, and now you can own the most advanced physics cart ever created, all without the restrictions of cables.
![]() |
![]() |
![]() |
Features
- Built-in ±100 N force sensor
- 3-axis accelerometer
- 3-axis rotational velocity sensor
- Bluetooth® connectivity
- Rechargeable battery
- Motion encoder measures position and velocity on or off the track
- Magnetic bumper for force sensor
- 3-position plunger
- Mass tray
- Velcro® tabs
- Force sensor hook and rubber bumper
Applications
- Kinematics
- Newton’s Laws
- Impulse
- Conservation of Momentum
- Elastic and Inelastic Collisions
- Conservation of Energy
- Simple Harmonic Oscillators
- Magnetic damping
- Determining g using acceleration on an incline
- And much more!
What's Included
- 1x Hook
- 1x Rubber bumper
- 1x Magnetic bumper
- 1x USB cable for charging
Product Specifications
Optical Encoder |
|
Accelerometer |
|
Force Sensor |
|
Gyro Sensor |
|
Mass (without accessories) | 250 g |
Patent No. | 10481173 |
Connectivity | USB and Bluetooth 5.2 |
Logging | No |
Battery Type | Rechargeable LiPo |
Battery & Logging
Stored Data Points Memory (Logging) 1 | Not Supported |
Battery - Connected (Data Collection Mode) 2 | Up to 7 hr |
Battery - Logging (Data Logging Mode) 3 | Not Supported |
Battery Type | LiPo |
1 Minimum # of data points with all measurements enabled, actual results depend on enabled measurements.
2 Continuous use in a connected state until battery failure, actual results will depend on sample rate, active measurements, and battery condition.
3 Logging until battery failure, actual results will depend on sample rate, active measurements, and battery condition.
* Normal classroom use is the sensor in active use for 20min/lab for 120 lab periods/yr.
Data Collection Software
This product requires PASCO software for data collection and analysis. We recommend the following option(s). For more information on which is right for your classroom, see our Software Comparison: SPARKvue vs. Capstone »
Connectivity Options
This product can connect directly to your computer or device with the following technologies. No Interface required. See the following guide for details regarding device compatibility: Wireless Bluetooth Product Compatibility »
- Bluetooth Low Energy (BLE)
- Universal Serial Bus (USB)
Dedicated Datalogging with SPARK LXi2
Consider an all-in-one, touchscreen data collection, graphing, and analysis tool for students. Designed for use with wired and wireless sensors, the SPARK LXi2 Datalogger simultaneously accommodates up to five wireless sensors and includes two ports for blue PASPORT sensors. It features an interactive, icon-based user interface within a shock-absorbing case and arrives packaged with SPARKvue, MatchGraph!, and Spectrometry software for interactive data collection and analysis. It can additionally connect via Bluetooth to the following interfaces: AirLink, SPARKlink Air, and 550 Universal Interface.
Buying Guide
Recommended Accessories | P/N | |
---|---|---|
Cart Mass (Set of 2) | ME-6757A | |
Smart Ballistic Cart Accessory | ME-1245 | |
Smart Cart Vector Display | ME-1246 | |
Smart Fan Accessory | ME-1242 | |
Smart Cart Rod Stand Adapter | ME-1244 | |
Smart Cart Charging Garage | ME-1243 | |
Bumper Accessory Set | ME-9884 | |
Smart Cart Motor | ME-1247 | |
NewSmart Cart Trigger Dropper | ME-1249 | |
NewBall Catcher | ME-1252 |
Replacement Parts | P/N | |
---|---|---|
Magnetic Bumper Set | ME-9885A | |
Smart Cart Wheel Replacement Kit | ME-1250 | |
Wireless Sensor 300 mAh Replacement Battery | PS-3296 | |
Wireless Sensor 300 mAh "B" Replacement Battery Use this battery if your sensor has a "B" printed on the back. See product page for details. | PS-3298 | |
Micro USB Cable | PS-3584 |
Also Available | P/N | |
---|---|---|
Smart Cart (Blue) | ME-1241 |
Product Guides & Articles
Dynamics Cart & Track System Configuration
Dynamics Systems provide an engaging and affordable method for physics educators to teach a variety of complex concepts in Kinematics and Dynamics. We offer a wide range of carts and tracks that make it easy to design your ideal Dynamics System, while staying under budget. In addition to durable equipment, PASCO Dynamics Systems also include access to a wealth of downloadable lab acitivities designed to get students hands-on and experimenting with key physics concepts.
Smart Cart to Vernier Comparison
The Smart Cart may appear to be equivalent to competitors like Vernier’s Go Direct Sensor Cart–they include many of the same features and specifications–but several distinctions set the PASCO Smart Cart apart.
Exploring High School Physics Curriculum
This article covers the core components of a high school physics curriculum to help teachers, students, parents, and administrators understand the objectives of teaching physics concepts.
Experiment Library
Perform the following experiments and more with the Smart Cart (Red).
Visit PASCO's Experiment Library to view more activities.
Hooke's Law
A Smart Cart is used to measure a spring’s force vs. position as a spring is stretched. According to Hooke’s law, the negative of the slope of the force vs. position graph is the spring constant.
Equations of Motion for Constant Acceleration
The motion of a Smart Cart as it accelerates down an incline is measured using Capstone software. Graphs of position and velocity are studied and comparisons are made to the standard equations of motion using User-Defined curve...
Work-Energy Theorem
A Force Sensor is used to measure the changing force applied by the stretched elastic cord, while the Smart Cart records its resulting velocity. Calculations are made and the work done by the elastic cord is compared to the increase...
Rotational Statics
Students use the Smart Cart force sensor and tension protractors to demonstrate that the sum of the forces acting on an object in static translational equilibrium is equal to zero, and the sum of the torques acting on an object...
Force and Acceleration
A Smart Cart is accelerated by the tension in a string that goes over a pulley and has mass hanging at its other end. The Smart Cart’s sensors are used to measure both the force and acceleration of the cart. A force vs. acceleration...
Smart Cart Out of the Box Experiments
A collection of quick experiments you can perform with the Smart Cart.
Newton's Third Law
In this lab, two Smart Carts exert forces on each other in a variety of situations. Each Smart Cart’s force sensor measures the force acting on that cart. In comparing the force measurements for the two carts, the student will...
Buoyant Force
Students use the Smart Cart force sensor to measure the buoyant force on a metal cylinder lowered into a fluid and then determine the relationship between the buoyant force on a submerged object and a) its volume and b) the weight...
Acceleration on a Ramp
What is acceleration and how does it relate to speed and velocity? A car rolling down a ramp accelerates. A car given an initial velocity up a ramp accelerates at the same rate!
A Model for Accelerated Motion
How can a velocity versus time graph be used to determine displacement? An object’s position changes as it accelerates.
Newton's Second Law
The acceleration of a Smart Cart with Smart Fan Accessory is measured for varying forces, while keeping the mass constant. The Smart Fan is used to produce a thrust, and the Smart Cart’s sensors are used to measure both the...
Acceleration on an Inclined Plane
What is the acceleration of an object down an inclined plane? What do the motion graphs of an object down an inclined plane look like? Galileo Galilei used inclined planes for his quantitative experiments into the nature of position,...